

Key Emerging Technology Area for Objective Force Sustainment

Smart Airdrop from High Altitude and when required, significantly offset from the Drop Zone

- Pinpoint, Just-in-Time Airdrop
- Eliminate Aircraft Vulnerability
- Eliminate Drop Zone Detectability

Edward Doucette
Director, Airdrop/Aerial Delivery Directorate
U.S. Army Natick Soldier Center

What Is Precision Airdrop?

Benefits of Precision Airdrop

- Increased USAF Survivability
- **High Altitude Deployment 25-35 K FT**

10-50 KM

- Offset/Standoff 15-50 KM
- **Autonomous Operation**
- **Compensates for CARP Errors**

- Rapid Resupply Over Strategic Distances
- **Increased Accuracy (25-100 M CEP)**
- **Multiple Loads/Multiple Destinations**
- **Major Sustainment Enabler and Footprint Reducer**
- Strategically, Operationally, & **Tactically Deployable**

Future Precision Aerial Resupply Family of Systems

- Precision Gliding Airdrop
- High Altitude, Precision Container Delivery Airdrop
 - Powered, Extended Offset Precision

Objective Force Aerial Resupply

Autonomous, Remote Delivery of Sensors, Munitions & Equipment to Multiple Drop Sites

Powered Parafoil Resupply

Technology Focus Area Aerodynamic Decelerators

- Gliding parachutes
 - Parafoils
 - Paragliders

Deployable semi-rigid and rigid wings

Technology Focus Area Sensors & Actuators

- Guidance, Navigation and Control
- Ground proximity/height sensing
- Weather/wind sensing
- Autonomous steering

Technology Focus Area Powered Precision System Integration

Technology Focus Area Airdrop System Modeling

Army's Airdrop Modeling Vision:

Meet challenge of Airborne Virtual Proving Ground

- Analytical prediction of parachute performance.
- Optimize parachute designs for higher performance and reduced life cycle cost.
- Decrease RDTE costs and time to fielding new airdrop systems.
- Develop high fidelity parachute computer models for design trade-offs and virtual testing /experimentation.
- Wind/weather prediction (leveraged)

Technical Approach:

- Numerically predict parachute opening and steady state characteristics, Model Fluid-Structure Interaction
- Numerically Couple Modified Computational Fluid Dynamics (CFD) and Structural Dynamics Codes
- Leveraging of outside organizations (Rice U, UCONN, NASA-JSC, AHPCRC, ARO,, ARL,)

FCS Precision Resupply Animation

Leaflet Delivery Animation

Precision Airdrop Infantry Resupply

TODAY

- 2200 Lb Payload Capacity Gliding Offset Systems
- 600 Lbs Powered Parafoil

FY08

- 10K Lbs Gliding Offset System
- 2K-10K Lbs Low Cost, High Altitude Precision